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ABSTRACT 21 

The Atlantic salmon aquaculture industry still struggles with ectoparasitic sea lice despite 22 

decades of research and development invested into louse removal methods. In contrast, 23 

methods to prevent infestations before they occur have received relatively little research 24 

effort, yet may offer key benefits over treatment-focused methods. Here, we summarise the 25 

range of potential and existing preventative methods, conduct a meta-analysis of studies 26 

trialling the efficacy of existing preventative methods, and discuss the rationale for a shift to 27 

the prevention-focused louse management paradigm. Barrier technologies that minimise host-28 

parasite encounter rates provide the greatest protection against lice, with a weighted median 29 

76% reduction in infestation density in cages with plankton mesh ‘snorkels’ or ‘skirts’, and 30 

up to a 100% reduction for fully enclosed cages. Other methods such as geographic 31 

spatiotemporal management, manipulation of swimming depth, functional feeds, repellents, 32 

and host cue masking can drive smaller reductions that may be additive when used in 33 

combination with barrier technologies. Finally, ongoing development of louse-resistant 34 

salmon lineages may lead to long term improvements if genetic gain is maintained, while the 35 

development of an effective vaccine remains a key target. Preventative methods emphasise 36 

host resistance traits while simultaneously reducing host-parasite encounters. Effective 37 

implementation has the potential to dramatically reduce the need for delousing and thus 38 

improve fish welfare, productivity and sustainability in louse-prone salmon farming regions. 39 

 40 

INTRODUCTION 41 

The global expansion of sea cage fish farming has driven considerable shifts in the population 42 

dynamics of marine pathogens. For 40 years, ectoparasitic lice have been an intractable 43 

problem for Atlantic salmon (Salmo salar) farming industries in Europe and the Americas 44 

(Torrissen et al. 2013; Iversen et al. 2015). Louse infestations are almost ubiquitous on 45 

salmon farms in these regions – primarily the salmon louse Lepeophtheirus salmonis but also 46 

Caligus elongatus in the northern hemisphere, and Caligus rogercresseyi in South America 47 

(Hemmingsen et al. 2020). Lice are natural parasites of fish, but intensive salmon farming 48 

amplifies louse densities, resulting in unnaturally high infestation pressure for both farmed 49 

and wild salmonids. Lice feed on the skin, blood and mucus of host fish, and severe 50 

infestations can cause ulceration leading to stress, osmotic imbalance, anaemia and bacterial 51 

infection (Grimnes and Jakobsen 1996; Øverli et al. 2014; González et al. 2016). 52 
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Accordingly, management of louse infestations on farmed fish is crucial to maintain 53 

acceptable stock welfare, limit production losses and reduce impacts on adjacent wild 54 

salmonid populations (Krkošek et al. 2013; Thorstad et al. 2015). 55 

In most jurisdictions, the primary management approach is to monitor louse densities on 56 

farmed fish, with mandatory delousing or other sanctions implemented when louse levels 57 

exceed allowable limits. Regulations also cap the number of active sites or total biomass in 58 

each management zone according to estimated infestation pressure on wild salmonids, and 59 

may mandate coordinated fallowing or other measures (e.g. Norway: Ministry of Trade and 60 

Fisheries, 2012). The introduction of chemotherapeutants in the 1970s allowed farms to treat 61 

sea louse infestations without substantially reducing production (Aaen et al. 2015). However, 62 

most chemotherapeutants are not environmentally benign, leading to concerns about 63 

bioaccumulation and effects on non-target invertebrate species (Burridge et al. 2010). More 64 

recently, treatment-resistant lice have emerged on farms in Europe and the Americas (Aaen et 65 

al. 2015) rendering many chemotherapeutants less effective.  66 

The discovery of treatment-resistance has prompted a rapid and recent shift to mechanical 67 

and thermal delousing methods in the Norwegian salmon farming industry (Overton et al. 68 

2018), with these methods also gaining traction elsewhere (e.g. Canada, Chile, Scotland). 69 

Mechanical and thermal delousing are highly effective at removing mobile lice and have little 70 

or no impact on non-target species. However, they are stressful for host fish and can lead to 71 

elevated post-treatment mortality rates compared to the use of chemotherapeutants (Overton 72 

et al. 2018). Low salinity or hydrogen peroxide baths are also effective in the right conditions 73 

and do not accumulate, although the long-term prospects for these methods are uncertain 74 

given the possibility of increasingly resistant lice (Treasurer et al. 2000, Helgesen et al. 2018, 75 

Groner et al. 2019). Alternatively, around 50 million cleaner fish (lumpfish Cyclopterus 76 

lumpus and several wrasse species) are deployed annually at Norwegian salmon farms to eat 77 

lice directly off salmon (Norwegian Directorate of Fisheries 2018), with >1.5 million cleaner 78 

fish also used in Scotland (Marine Scotland Directorate, 2017). However, it is unclear 79 

whether their efficacy (Overton et al. 2020; Barrett et al. 2020a) is sufficient to justify their 80 

poor welfare in commercial sea cages (Nilsen et al. 2014; Hvas et al. 2018; Mo and Poppe 81 

2018; Yuen et al. 2019; Stien et al. 2020). 82 

Decades of innovation in louse control have allowed the salmon farming industry to continue 83 

functioning in louse-prone regions, but not without significant environmental and ethical 84 

concerns. Most research and development efforts so far have focused on treating at the post-85 
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infestation stage. This likely reflects the relatively rapid return on investment into new 86 

delousing methods but may be a sub-optimal strategy if opportunities to invest in long term 87 

solutions are missed (Brakstad et al. 2019). An alternative approach is to focus louse 88 

management efforts on preventing infestation via proactive interventions (‘preventative 89 

methods’ herein) that may significantly reduce the need for farms to delouse. Here, we 90 

summarise the range of potential or existing preventative methods and conduct a meta-91 

analysis of empirical estimates of sea louse removal efficacy for each method. Finally, we 92 

discuss the rationale for a paradigm shift from reactive louse control to a proactive approach 93 

that focuses on predicting and preventing infestations, and outline some possible strategies to 94 

promote long term efficacy of preventative methods. 95 

 96 

WHAT PREVENTATIVE METHODS ARE AVAILABLE? 97 

Preventative methods are deployed pre-emptively to reduce the rate of new infestations. 98 

Within this classification, we include approaches that either: (1) reduce encounter rates 99 

between salmon and infective copepodid stage lice; or (2) reduce the attachment success 100 

and/or early post-settlement survival of copepodids via interventions that begin to act at the 101 

moment of attachment or first feeding (Fig. 1). These approaches are distinct from control via 102 

delousing treatments, which are generally implemented as a reaction to an existing infestation 103 

(i.e. ‘immediate’ control), or via cleaner fish, which may be deployed prior to infestation and 104 

function on an ongoing basis (i.e. ‘continuous’ control) but are not typically effective against 105 

newly attached lice (e.g. Imsland et al. 2015). 106 

1. Reducing encounters 107 

1.1 Barrier technologies 108 

A growing understanding of louse physiology and host-finding behaviour has led to several 109 

important advances in louse prevention, and by using data on preferred swimming depths of 110 

infective copepodids in relation to environmental parameters (Heuch 1995; Heuch et al. 111 

1995; Crosbie et al. 2019), farmers can now separate hosts from parasites using depth-112 

specific louse barriers. 113 

Barriers made from fluid-permeable plankton mesh or impermeable membranes can 114 

dramatically reduce infestation rates by preventing infective copepodids from entering the 115 

cage environment. ‘Skirt’ or ‘snorkel’ barriers prevent particles in the surface layers—where 116 

most copepodids reside—from entering the cage while still allowing full water exchange 117 
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below the level of the barrier (Oppedal et al. 2017; Wright et al. 2017; Stien et al. 2018). 118 

Salmon often choose to reside below the level of the skirt or snorkel, meaning that the barrier 119 

functions by simultaneously (i) encouraging salmon to swim below the depth at which 120 

infestation risk is highest, and (ii) protecting any individuals that use the surface layers, for 121 

example, while feeding or refilling the swim bladder. In the most complete use of barrier 122 

technologies, fully-enclosed cages are supplied with louse-free water either filtered or 123 

pumped from depths below the typical depth range of copepodids (e.g. 25 m: Nilsen et al. 124 

2017).  125 

Barrier technologies (particularly skirts) are already widely used by the industry, but specific 126 

designs should be matched to local environmental conditions to avoid problems with low 127 

dissolved oxygen or net deformation (Stien et al. 2012; Frank et al. 2015; Nilsen et al. 2017). 128 

For example, Nilsen et al. (2017) prevented deformation of impermeable tarpaulin barriers at 129 

relatively sheltered sites by creating slight positive pressure within the cage (i.e. inside water 130 

level 2-3 cm above sea level). At more exposed sites, it is preferable to use fluid-permeable 131 

plankton mesh barriers (e.g. Grøntvedt et al. 2018). Brackish surface water can also reduce 132 

the efficacy of skirts and snorkels by causing both lice and salmon to reside below the level 133 

of the barrier (Oppedal et al. 2019), while there is evidence that barrier technology may 134 

reduce the performance of cleaner fish when used in combination (Gentry et al. 2020).  135 

1.2 Manipulation of swimming depth 136 

Salmon behaviour, primarily swimming depth, can also be manipulated in the absence of 137 

barrier technology to reduce spatial overlap (and therefore encounter rates) between hosts and 138 

parasites, especially salmon lice. Typically, the aim is to reduce encounter rates by causing 139 

salmon to swim below the depths at which lice are most abundant. Deep swimming 140 

behaviour can be promoted through the use of deep feeding and/or lighting (Hevrøy et al. 141 

2003; Frenzl et al. 2014; Bui et al. 2020). Where surface feeding is conducted, reducing the 142 

frequency or regularity of feeding (e.g. twice daily at varying times) can reduce the amount 143 

of time spent in the surface layers (Lyndon and Toovey 2000). Deep swimming can also be 144 

forced by submerging cages to the desired depth (Dempster et al. 2008; Dempster et al. 145 

2009), and there is evidence for reduced louse levels on salmon in submerged cages (Osland 146 

et al. 2001; Hevrøy et al. 2003; Sievers et al. 2018; Glaropoulos et al. 2019). Long term 147 

submergence can affect fish welfare as salmon lose buoyancy over time (Korsøen et al. 2009; 148 

Macaulay et al. 2020), however recent research indicates most welfare concerns can be 149 
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addressed by allowing periodic surface access or fitting a submerged air-filled dome for swim 150 

bladder refilling (Korsøen et al. 2012; Glaropoulos et al. 2019; Oppedal et al. In Press). 151 

1.3 Geographic spatiotemporal management 152 

A range of spatiotemporal management approaches are applied at the landscape scale to 153 

reduce infestation risk by controlling where and when salmon are farmed. Some farm sites 154 

have consistently low louse abundances and rarely require delousing (www.barentswatch.no). 155 

Locating farms to take advantage of beneficial oceanographic conditions and minimise 156 

connectivity with adjacent sites may reduce the number of host-parasite encounters over a 157 

grow-out cycle (Bron et al. 1993; Samsing et al. 2017; Samsing et al. 2019). Fallowing 158 

during periods of high propagule pressure may also delay first infestation after sea transfer of 159 

smolts (Bron et al. 1993). 160 

1.4 Filtering and trapping 161 

Filters and traps may be deployed in or around cages to remove infective copepodids from 162 

the water column before they encounter salmon. Filter-feeding shellfish racks hung around 163 

sea cages may reduce louse abundance if deployed at sufficient scale (Byrne et al. 2018; 164 

Montory et al. 2020), while powered filters are effective in the context of preventing lice and 165 

eggs from entering the environment during delousing (O’Donohoe and Mcdermott 2014). In 166 

other fish farming systems, cleaner shrimp have been used to remove parasites or parasite 167 

eggs from fish and nets and reduce infestation or reinfestation risk (Vaughan et al. 2018a; 168 

Vaughan et al. 2018b). However, this method may have limited application against sea lice 169 

because of the planktonic mode of dispersal and infestation (i.e. larvae do not develop within 170 

the cage structure). Light traps have been tested in the field with mixed results (Pahl et al. 171 

1999; Novales Flamarique et al. 2009), and increasing knowledge of host-locating behaviour 172 

in lice may present new possibilities for baiting traps with attractive chemosensory cues 173 

(Devine et al. 2000; Ingvarsdóttir et al. 2002; Bailey et al. 2006; Mordue and Birkett 2009; 174 

Fields et al. 2018). No preventative filtering or trapping methods have been widely deployed 175 

in the industry, but some systems have recently become commercially available (e.g. 176 

‘Strømmen-rør’, Fjord Miljø; ‘NS Collector’, Vard Aqua). 177 

1.5 Repellents and host cue masking 178 

Interventions may be used to repel lice or mask host cues, potentially reducing host-parasite 179 

encounters even when parasites enter the sea cage. Repellents or masking compounds can 180 

either be released into the water column or included in feed to alter the host’s semiochemical 181 

http://www.barentswatch.no/


Please cite as: Barrett LT, Oppedal F, Robinson N, Dempster T (In Press) Prevention not cure: a review of methods to avoid 
sea lice infestations in salmon aquaculture. Reviews in Aquaculture. 

7 
 

profile (Hastie et al. 2013; O’Shea et al. 2017). Indeed, some existing commercially available 182 

functional feeds are claimed to reduce attraction of lice toward fish (e.g. Shield, Skretting; 183 

Robust, EWOS/Cargill). Visual cues may also be important, and the effect of modified light 184 

conditions on infestation rates have been trialled with mixed results. Browman et al. (2004) 185 

concluded that ultraviolet-A and polarisation were not important for host detection at small 186 

spatial scales. Light intensity interacted with salinity and host velocity to influence 187 

distribution of louse attachment in another study (Genna et al. 2005), while Hamoutene et al. 188 

(2016) reported that 24-hour darkness affected the attachment location but not abundance of 189 

salmon lice. 190 

1.6 Incapacitation 191 

Several methods have been proposed for disabling or killing lice—from egg to adult stages—192 

in or around sea cages. These include ultrasonic cavitation (Alevy 2017; Skjelvareid et al. 193 

2018; Svendsen et al. 2018), direct current electricity (Bredahl 2014) and irradiation with 194 

short wavelength light (Barrett et al. 2020b, Barrett et al. 2020c). Some have demonstrated 195 

efficacy at close range (Skjelvareid et al. 2018, Barrett et al. 2020b, Barrett et al. 2020c), but 196 

it is currently unclear whether any such methods can be effective at commercial scale. 197 

1.7 Louse population control 198 

Interventions to suppress louse populations outside the cage environment would require 199 

careful consideration before deployment and must be specific to targeted louse species. Very 200 

little work has been done in this area, but possible avenues may include the release of 201 

parasites and pathogens that are specific to sea lice (Økland et al. 2014; Økland et al. 2018; 202 

Øvergård et al. 2018), or CRISPR-based ‘gene drives’ (McFarlane et al. 2018; Noble et al. 203 

2019). 204 

2. Reducing post-encounter infestation success 205 

2.1 Functional feeds 206 

Feeds that provide physiological benefits beyond basic nutritional requirements are termed 207 

functional feeds and are increasingly prevalent in industrial fish farming (Tacchi et al. 2011). 208 

Feed ingredients that modify the mucus layer or modulate skin immune responses may 209 

reduce initial attachment success or facilitate effective immune responses against newly-210 

attached lice (Martin and Krol 2017). Functional feeds may also include ingredients that are 211 

toxic or repellent to attached lice – these are not necessarily distinct from in-feed 212 

chemotherapeutants, except that they tend to be derived from ‘natural’ sources (e.g. plant-213 
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derived essential oils: Jensen et al. 2015). Functional feeds aimed at improving salmon louse 214 

resistance are already commercially available (e.g. Shield, Skretting; Robust, EWOS/Cargill). 215 

It will be important to test for any adverse effects of new functional feeds. For instance, 216 

glucosinolates and beta-glucans have been shown to be effective for reducing louse 217 

infestation (Refstie et al. 2010; Holm et al. 2016), but glucosinolates also have a range of 218 

effects on liver, muscle and kidney function that would need to be investigated (Skugor et al. 219 

2016). Hormonal treatments may also be effective at reducing louse infestation (Krasnov et 220 

al. 2015), but preventative hormone treatments are likely to be perceived negatively by 221 

consumers. 222 

2.2 Vaccines 223 

Vaccines against bacteria and viruses are increasingly widespread in fish farming. In Norway, 224 

antibiotics have been almost entirely replaced by injectable multi-component oil-based 225 

vaccines (Brudeseth et al. 2013), and there is increasing use of injected or orally administered 226 

vaccines in North America and Chile (Brudeseth et al. 2013). However, to our knowledge 227 

there is currently only one (partially effective) vaccine available for sea lice (C. 228 

rogercresseyi: Providean Aquatec Sea Lice, Tecnovax). While there are no in-principle 229 

barriers, the development of vaccines for ectoparasites is technically challenging; despite the 230 

identification of numerous vaccine targets in a range of ectoparasites, the cattle tick 231 

(Rhipicephalus microplus) remains the only ectoparasite with a highly effective vaccine 232 

(Stutzer et al. 2018).  233 

Successful development of a recombinant or DNA vaccine would allow cost-effective 234 

production and delivery (Raynard et al. 2002; Sommerset et al. 2005; Brudeseth et al. 2013). 235 

Potential vaccines exist at various stages of development, from localisation of candidate 236 

antigens in lice (Roper et al. 1995), demonstration of antibody production in response to 237 

inoculation with louse extracts (Reilly and Mulcahy 1993), and use of recombinant proteins 238 

to vaccinate salmon in tank trials (Carpio et al. 2011; Carpio et al. 2013; Basabe et al. 2014; 239 

Contreras et al. 2020). Recently, RNA interference has been used to knock down candidate 240 

vaccine targets and assess potential efficacy through challenge experiments (Eichner et al. 241 

2014; Eichner et al. 2015; Komisarczuk et al. 2017). 242 

2.3 Breeding for louse resistance 243 

Variation in louse resistance is considerable among Atlantic salmon and has a heritable 244 

component (Glover et al. 2005; Kolstad et al. 2005; Gjerde et al. 2011; Tsai et al. 2016; 245 
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Holborn et al. 2019), indicating that there is sufficient additive genetic variation for selective 246 

breeding. Observed variation in louse resistance is probably due to differences in expression 247 

of both host cues and immune responses (Holm et al. 2015). Decades of selective breeding 248 

has resulted in much higher growth rates for farmed salmonid strains (Gjedrem et al. 2012) 249 

and increased resistance to some diseases (Leeds et al. 2010; Ødegård et al. 2018; Storset et 250 

al. 2007; reviewed by Robinson et al. 2017). More recently, the development of high-251 

throughput single nucleotide polymorphism (SNP) genotyping technology has enabled 252 

relatively rapid and affordable genomic selection and fine mapping of quantitative trait loci 253 

associated with disease resistance.  254 

Quantitative trait loci explaining between 6-13% of the genetic variation in sea louse 255 

resistance (louse density on fish) have been detected in North American and Chilean 256 

populations of Atlantic salmon (Rochus et al. 2018; Robledo et al. 2019). Salmon families 257 

with greater resistance to sea lice show upregulation of several immune pathway and pattern 258 

recognition genes compared to more susceptible families (Robledo et al. 2018), and the two 259 

major breeding companies in Norway (AquaGen and SalmoBreed) offer salmon lines that 260 

have been selected using marker assisted section or genomic selection for sea louse 261 

resistance. Use of genomic selection has been shown to increase the accuracy of selection for 262 

sea louse resistance by up to 22% (Tsai et al. 2016; Correa et al. 2017), and two generations 263 

of genomic selection focused on just sea louse resistance led to a 40-45% reduced sea louse 264 

infestation compared to unselected fish (Ødegård et al. 2018).  265 

Other possible approaches for improving sea louse resistance in Atlantic salmon include 266 

hybridisation of Atlantic salmon with more louse-resistant salmonid species (Fleming et al. 267 

2014), genetic modification of Atlantic salmon with immune genes from other salmonids, or 268 

use of gene editing to modify protein function or regulate the expression of genes affecting 269 

resistance. In the case of hybridisation or any genetic modification, the effect on other 270 

production traits would need to be assessed before hybrids or edited fish are used by the 271 

industry. Gene editing approaches have high potential (Gratacap et al. 2019), but successful 272 

implementation depends on knowing which genes to modify to have the desired effect, on 273 

developing effective methods for implementing and spreading the gene edits through the 274 

breeding population, and on the acceptability of the use of the technology by the general 275 

public and government. 276 

 277 
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EFFICACY OF PREVENTATIVE METHODS 278 

To assess the state of knowledge on the efficacy of preventative methods, we conducted a 279 

systematic review and meta-analysis of published studies pertaining to preventative methods. 280 

To find relevant studies, we searched ISI Web of Science, Scopus and Google Scholar in 281 

February 2020 using the following search string: (aquacult* OR farm*) AND (salmon* or 282 

Salmo) AND (lice OR louse OR salmonis OR Caligus). We also discovered additional studies 283 

referenced within articles returned by the search string. Together, our searches returned 284 

>1200 peer-reviewed articles, technical reports and patents relevant to lice and salmon 285 

aquaculture, of which 141 provided evidence on the efficacy of preventative methods and 286 

were included in the review.  287 

Studies that provided relevant response variables were included in a meta-analysis, allowing 288 

the comparison of effect sizes across the range of preventative approaches. For inclusion, 289 

studies were required to provide empirical measures of relative louse infestation densities for 290 

treatment groups (preventative methods used) and control groups (no preventative methods 291 

used). Studies that applied treatments to lice but did not directly test for effects on infestation 292 

were not included. Effect sizes were standardised using the natural log of the response ratio: 293 

lnRR = ln(µT/µC), where µT is the treatment group response and µC is the control group 294 

response. In most cases, response variables were either mean or median attached lice per fish. 295 

Where a study tested multiple qualitatively different treatments, each treatment was 296 

considered a replicate comparison in the meta-analysis. Where there were several 297 

qualitatively similar treatments (e.g. a range of doses of the same substance) the strongest 298 

treatment was included in the meta-analysis. Epidemiological studies typically did not have 299 

clear control or treatment groups; in such cases, the area or condition with the highest louse 300 

density was designated as the control group for the purposes of calculating a response ratio; 301 

this practice may inflate average effect sizes.  302 

A total of 41 articles provided 98 comparisons that met the criteria for inclusion in the meta-303 

analysis. For each preventative approach, we calculated a median effect size. When 304 

calculating a median effect, weighting studies according to their sample size can reduce bias. 305 

However, this was difficult in practice due to inconsistent definition of units of replication 306 

and therefore sample size across studies. Given this, we applied weightings to studies within 307 

each preventative approach (except vaccination, breeding and functional feed approaches, 308 

which are usually challenge tested in tanks) according to the scale or level of evidence of the 309 

experiment (in descending order of relative weights, level A: multiple farm experiment – 1.0; 310 
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level B: experiment in full size sea cages at a single site – 0.8; level C: experiment in small 311 

sea cages at a single site – 0.6, level D: observational/epidemiology – 0.4; level E: 312 

experiment in tanks – 0.2). 313 

To allow a visual assessment of potential publication bias, we produced a ‘funnel plot’ in 314 

which study effect sizes are fitted against the precision (1/SE) of the effect. This is based on 315 

sample size as defined by the study authors, or else the best available approximation. 316 

Precision is typically increased by sample size and/or experimental power, and typically, in a 317 

field without publication bias, the average direction and size of effect should not vary 318 

systematically with study precision (Hedges et al. 1999; Nakagawa et al. 2017).  319 

Which preventative methods are most effective against sea lice? 320 

Comparison of response ratios revealed high variability in effect sizes among trials of 321 

preventative methods (Fig. 2), but evidence from sea cage trials indicates that barrier 322 

technologies can drive the largest and most consistent reductions in louse infestation levels 323 

(weighted median 78% reduction, range 8% increase to 99% reduction, n = 13 ; Fig. 2). 324 

Efficacy of specific barrier technologies appeared to be related to the extent of coverage: 325 

skirts were moderately effective (median 55% reduction, range 30-81%, n = 2), snorkels were 326 

highly effective (median 76% reduction, range 8% increase to 95% reduction, n = 9), and in 327 

the sole closed containment study (Nilsen et al. 2017), infestations were almost entirely 328 

avoided (98–99.7% reduction).  329 

Approaches utilising manipulation of salmon swimming depth offered variable outcomes, but 330 

with strong effects in certain situations (weighted median 26% reduction, range 72% increase 331 

to 93% reduction, n = 11; Fig. 2). Geographic spatiotemporal management of farming effort 332 

(or related variables such as simulated current speed: Samsing et al. 2015) had similarly 333 

variable effects (weighted median 13% reduction, range 81% increase to 73% reduction, n = 334 

14; Fig. 2). Functional feeds tended to have small but beneficial effects on sea louse 335 

infestations (median 24% reduction, range 108% increase to 67% reduction, n = 32: Fig. 2), 336 

as do published vaccine trial results (median 4% reduction, range 20% increase to 57% 337 

reduction). Notably, deployment of multiple preventative methods in combination with 338 

cleaner fish had highly variable effects in three published studies using replicated modern 339 

commercial sea cages (weighted median 9% reduction, range 143% increase to 49% 340 

reduction, n = 5: Bui et al. 2019b; Bui et al. 2020; Gentry et al. 2020). 341 
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Several potential preventative approaches have seen little effort to test their effects on 342 

infestation rates. The use of repelling non-host cues was effective in one small-scale cage 343 

study (53-74% reduction, n = 3: Hastie et al. 2013), as was filtering of copepodids using 344 

oyster racks ((32% reduction: Byrne et al. 2018) or light traps (12% reduction: Pahl et al. 345 

1999), and the incapacitation of lice using electric fences (78% reduction: Bredahl 2014) and 346 

ultrasonic cavitation (37% increase to 39% decrease: Skjelvareid et al. 2018). 347 

Efficacy of selective breeding for louse resistance should be interpreted with a long-term 348 

view. Iterative improvements tend to be small-moderate but can lead to large genetic gain 349 

over generations (Yanez et al. 2014; Gjedrem 2015), especially if genomic or marker assisted 350 

selection for sea louse resistance is given a high weighting in the overall breeding index 351 

(Ødegård et al. 2018). Estimates of heritability in louse resistance are moderate to high 352 

depending on the method used (range 0.07-0.35: e.g. Gjerde et al. 2011; Glover et al. 2005; 353 

Houston et al. 2014; Holborn et al. 2019), indicating that there is sufficient heritable variation 354 

available for genetic improvement. 355 

Is the evidence base representative and robust? 356 

Most preventative approaches have only been assessed a few times. Among the 41 articles 357 

that met the criteria for inclusion in the meta-analysis, 7 provided data on efficacy of barrier 358 

technologies, 6 on manipulation of swimming depth, 1 on breeding, 13 on functional feeds, 2 359 

on incapacitation, 2 on repellents or cue-masking, 5 on geographic spatiotemporal 360 

management, 2 on trapping and filtering, and 3 on candidate vaccines. Most articles (n = 38) 361 

were primarily concerned with salmon lice L. salmonis (i.e. those in Europe and North 362 

America), while the remaining 3 articles targeted prevention of sea lice C. rogercresseyi (i.e. 363 

those in Central or South America). All tested efficacy using Atlantic salmon. 364 

Levels of evidence ranged widely: Barrier technologies had the most rigorous evidence base, 365 

with multiple studies with evidence levels from A-C (Fig. 2). Evidence levels should be 366 

considered when interpreting estimated efficacy, as preventative approaches may vary in their 367 

scalability to commercial sea cages (e.g. viability of methods to filter or trap copepodids are 368 

likely to be highly dependent on water volume). 369 

Units of replication also varied widely between studies, from individual fish to tanks, sea 370 

cages or farms. 51 out of 98 comparisons treated individual fish as replicates, in most cases 371 

resulting in a pseudoreplicated design as individuals were kept within a comparatively small 372 

number of tanks or cages (often <3 tanks or cages per group).  We recommend that where 373 
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fish are treated as replicates, the number of tanks or cages should also be reported, and mixed 374 

effects statistical methods employed to account for non-independence between fish held 375 

within the same tank or cage (Harrison et al. 2018). 376 

Finally, the meta-analysis revealed possible evidence for publication bias, with fewer studies 377 

than expected present in the area of the plot corresponding to low precision and negative 378 

findings (Fig. 3). In other words, the funnel plot indicates that among studies with small 379 

sample sizes and/or highly variable data, those with positive results regarding efficacy of a 380 

preventative method were more likely to be published. Not publishing negative findings can 381 

(a) artificially inflate estimates of efficacy when averaging across studies, and (b) lead 382 

researchers to waste resources testing methods that have already been found to be ineffective, 383 

perhaps multiple times. Accordingly, it is important that researchers and managers are aware 384 

of the potential for publication bias when considering the evidence for novel louse 385 

management strategies (whether preventative or otherwise). The prevalence of publication 386 

bias is likely to be influenced by the type of study and preventative method. For example, 387 

tests of barrier technologies and swimming depth manipulation are generally conducted in sea 388 

cages, and given the effort and cost involved, results are perhaps more likely to be published 389 

in full. Other approaches may be inherently more susceptible to publication bias, for example 390 

when a large range of substances or doses are tested in the early stages of a study and only 391 

those that are reasonably successful are reported. 392 

 393 

THE NEW PARADIGM: A FOCUS ON PREVENTATIVE METHODS AGAINST 394 

SEA LICE 395 

The evidence base demonstrates that effective implementation of preventative methods can 396 

reduce infestation pressure within sea cages and therefore reduce the need for louse control. 397 

A prevention-focused louse management paradigm may lead to several key benefits:  398 

(1) Most preventative methods have small if any impacts on non-target organisms (like 399 

mechanical and thermal delousing methods, but unlike some common chemotherapeutants: 400 

Burridge et al. 2010; Taranger et al. 2015). 401 

(2) Delousing treatments cause stress and injury to stock, leading to welfare concerns and 402 

production losses from reduced growth, higher mortality and a lower quality product 403 

(Overton et al. 2018). By focusing on avoiding encounters and reducing initial infestation 404 

success, preventative methods may be targeted at infective louse stages without also 405 
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impacting host fish (Fig. 4). Conversely, some preventative methods can selectively target 406 

host traits to improve innate resistance (Fig. 4), such as promoting parasite avoidance 407 

behaviour via behavioural manipulation or immune function via functional feeds and 408 

selective breeding. 409 

(3) Multiple preventative methods can be deployed together and on a continuous basis, 410 

although specific combinations should be trialled first (Bui et al. 2020; Gentry et al. 2020). 411 

This contrasts with current louse control methods, which are less amenable to being used in 412 

combination (for example, cleaner fish should not be subjected to mechanical delousing 413 

along with the salmon). The technical ability already exists to place farms strategically to 414 

minimise connectivity (Samsing et al. 2019), and salmon with higher louse resistance are 415 

already being stocked by some farms in combination with barrier technologies (primarily 416 

skirts) and/or functional feeds for louse resistance.  Effective use of multiple preventative 417 

methods in combination could reduce louse densities by orders of magnitude without 418 

negative effects on fish welfare, although as with any control strategy, potential welfare 419 

concerns (e.g. those arising from holding salmon at depth) should be tested and mitigated 420 

prior to widespread deployment. Vaccines may eventually result in even greater additive 421 

reductions in louse densities. 422 

 423 

MAINTAINING LONG-TERM EFFICACY 424 

Host-parasite interactions are subject to a coevolutionary arms race in which organisms must 425 

constantly evolve to keep up with the coevolution occurring in opposing organisms (i.e. the 426 

Red Queen hypothesis: Hamilton et al. 1990). Most lice never encounter a potential host, and 427 

those that do will likely only have one opportunity to attach. This could precipitate strong 428 

selective pressures, and because farmed salmon represent the majority of available hosts for 429 

lice in some regions (especially in the north-east Atlantic), louse control interventions on 430 

farms are likely to exert directional selection pressure on louse populations wherever certain 431 

genotypes are favoured over others. Evolution of resistance occurred relatively quickly in 432 

response to chemical delousing (global reviews: Aaen et al. 2015; Gallardo-Escárate et al. 433 

2019) and presently remains high (Helgesen et al. 2018), although in areas where wild 434 

salmonids are abundant, flow of susceptible genes from lice on wild hosts may help to 435 

maintain treatment efficacy (Kreitzman et al. 2017). 436 
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It is currently unclear whether preventative methods will be similarly vulnerable to the 437 

evolution of resistance in lice, but some methods will likely create suitable conditions. For 438 

example, barrier technologies that span the surface layers (e.g. 0-10 m) may select for lice 439 

that preferentially swim deeper. Potential for evolution will depend on many factors 440 

including the heritability of the resistance to the preventative treatment in lice, the levels of 441 

genetic variation existing in the louse population, the intensity of selection, treatment season, 442 

frequency and geographic locations, prevailing currents and tides (louse dispersal) and the 443 

biological complexity of the preventative mechanism. Nonetheless, the preventative 444 

paradigm does have the advantage of a diversity of methods that may disrupt directional 445 

selection for resistance to a given method. Research is needed to outline the best way 446 

forward, but management strategies to slow the evolution of resistance to preventative 447 

methods should heed lessons from other systems (e.g. antibiotic resistance in human 448 

medicine: Raymond 2019). Potential strategies to slow the evolution of resistance to 449 

preventative methods may include: 450 

(1) Continuing to delouse when necessary. Effective use of preventative methods will greatly 451 

reduce the required frequency of delousing, but periodic delousing will hamper the genetic 452 

proliferation of any lice that successfully infest stock. 453 

(2) Deployment of multiple methods in combination to counteract directional selection. For 454 

example, combining skirts or snorkels with non-depth-specific methods such as functional 455 

feeds or spatial management may reduce directional selection for louse swimming depth. 456 

(3) Planning of spatial ‘firebreaks’ whereby farms are removed or fallowed at strategic areas 457 

to minimise louse population connectivity, thus reducing reinfestation rates and potentially 458 

slowing the spread of resistant genotypes between farming areas (Besnier et al. 2014; 459 

Samsing et al. 2017; Samsing et al. 2019). 460 

(4) Ongoing selective breeding for louse-resistant salmon lineages to ensure that genetic 461 

gains are not lost through random genetic drift. Using current cohorts of wild sea lice when 462 

calibrating breeding value predictions for each generation will help to ensure that genetic 463 

gains continue to be relevant and account for any evolutionary developments in the louse 464 

population. Like other vertebrates, salmon have a complex immune system and biology, 465 

which should provide a range of potential defence options against parasites. Genomic 466 

selection probably affects a number of biological processes in the fish, and sea lice would 467 

therefore need to have sufficient genetic variability to be able to successfully adapt and 468 
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counter the genomic selection. Development of multiple louse-resistant salmon strains may 469 

dampen directional selection for corresponding adaptation in louse populations. 470 

Conversely, preventative methods could be utilised in a way that promotes evolution of 471 

certain resistant traits (such as deeper swimming) in order to increase specificity of louse 472 

populations to salmon in farming environments, and therefore reduce infestation pressure on 473 

wild salmon. Modelling is needed to determine whether such an approach could prove 474 

beneficial in decoupling encounters between farm-derived lice and wild salmonids. 475 

 476 

CONCLUSIONS 477 

Effective use of barrier technologies such as skirts, snorkels, or closed containment, coupled 478 

with supplementary preventative methods may make delousing treatments unnecessary at 479 

many sites, while high-risk locations may require additional management and regulation. 480 

Breeding of louse-resistant salmon has begun; heritable variation exists, and cumulative 481 

improvements are reducing susceptibility to lice in some salmon lineages. The successful 482 

development of an effective vaccine would also be an important advance. In general, 483 

preventative methods are preferable to reactive delousing, and moving towards a prevention-484 

focused paradigm on Atlantic salmon farms may yield significant improvements in fish 485 

welfare and productivity, while avoiding significant environmental impacts. 486 
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TABLES 

Table 1. Studies that assessed efficacy of preventative methods against louse infestation in Atlantic salmon. Effect sizes given are raw response 

ratios (treatment/control group) for louse infestation densities. Smaller values indicate more effective prevention. Where a study includes 

multiple treatment levels, the effect size range is given. 

METHOD 

EFFECT 

SIZE 

(T/C) 

STUDY TYPE 
STUDY 

ENVIRONMENT 

STUDY 

LOCATION 

FOCAL 

LOUSE 
NOTES REFERENCE 

1.1 Barrier technologies        

Snorkel cages 0.57 Sea cage trial Small cage Norway L. salmonis  Stien et al. 2016 

 0.05–0.37 Sea cage trial Small cage Norway L. salmonis  Oppedal et al. 2017 

 0.17 Sea cage trial Large cage Norway L. salmonis  Wright et al. 2017 

 0.24 Sea cage trial Large cage Norway L. salmonis  Geitung et al. 2019 

 0.36–1.08 Sea cage trial Small cage Norway L. salmonis  Oppedal et al. 2019 

Skirts 0.70 Sea cage trial Multi farm Norway L. salmonis  Grøntvedt et al. 2018 

 0.19 Sea cage trial Large cage Norway L. salmonis  Stien et al. 2018 

Closed containment 0.00–0.02 Sea cage trial Multi farm Norway L. salmonis  Nilsen et al. 2017 

1.2 Manipulation of 

swimming depth 
       

Forced submergence 0.08–1.72 Sea cage trial Small cage Norway L. salmonis  Hevrøy et al. 2003 

 0.31–0.45 Sea cage trial Large cage UK L. salmonis  Frenzl et al. 2014 

 1.09 Sea cage trial Large cage Norway L. salmonis  Nilsson et al. 2017 

 0.28 Sea cage trial Small cage Norway L. salmonis  Sievers et al. 2018 

 0.70 Sea cage trial Small cage Norway L. salmonis  Glaropoulos et al. 2019 

Deep lights/feeding 0.74 Sea cage trial Large cage UK L. salmonis  Lyndon and Toovey 2000 

        

1.3 Geographic 

spatiotemporal 

management 

       

Location NA Challenge trial Tank UK L. salmonis Salinity Genna et al. 2005) 

 0.45–0.93 Epidemiology Multi farm Chile 
C. 

rogercresseyi 
Various risk factors 

Zagmutt-Vergara et al. 

2005 

 0.27–0.88 Epidemiology Multi farm Canada L. salmonis Spatial risk factors Saksida et al. 2007 

 0.48–0.58 Epidemiology Multi farm Chile 
C. 

rogercresseyi 
Spatial risk factors Kristoffersen et al. 2013 
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Current speed NA Challenge trial Tank UK L. salmonis  Genna et al. 2005 

 0.40–1.00 Challenge trial Tank Norway L. salmonis  Samsing et al. 2015 

Fallowing NA Epidemiology Multi farm UK L. salmonis Louse accumulation Bron et al. 1993 

 1.05–1.81 Epidemiology Multi farm Norway L. salmonis Louse accumulation Guarracino et al. 2018 

Firebreaks NA Modelling Multi farm Norway L. salmonis Dispersal modelling Samsing et al. 2019 

1.4 Filtering and 

trapping 
       

Light traps 0.88 Sea cage trial Small cage USA L. salmonis  Pahl et al. 1999 

Filtering 0.68 Sea cage trial Large cage Canada L. salmonis Oyster racks Byrne et al. 2018 

1.5 Repellents and host 

cue masking 
       

In-water compounds 0.26–0.47 Sea cage trial Small cage UK L. salmonis  Hastie et al. 2013 

In-feed compounds None - - - -  No published studies 

Light modification 0.93–1.08 Challenge trial Tank Norway L. salmonis  Browman et al. 2004 

 NA Challenge trial Tank UK L. salmonis  Genna et al. 2005 

 NA Challenge trial Tank Canada L. salmonis  Hamoutene et al. 2016 

1.6 Incapacitation        

Electricity 0.22 Sea cage trial Small cage Norway L. salmonis DC electric fence Bredahl 2014 

Ultrasound 0.61–1.37 Challenge trial Tank Norway L. salmonis  Skjelvareid et al. 2018 

Irradiation None - - - -  No published studies 

1.7 Louse population 

control 
       

Pathogens None - - - -  No published studies 

Gene drives None - - - -  No published studies 

2.1 Functional feeds        

Immunomodulation 0.56 Challenge trial Tank UK L. salmonis Nucleotides Burrells et al. 2001 

 0.61–1.09 Challenge trial Tank Canada L. salmonis Various additives Covello et al. 2012 

 0.48–1.31 Challenge trial Small cage Norway L. salmonis Various additives Refstie et al. 2010 

 0.70–0.81 Challenge trial Tank Canada L. salmonis Aquate, CpG Poley et al. 2013 

 0.73–0.85 Challenge trial Tank Norway L. salmonis Various additives Provan et al. 2013 

 0.84 Challenge trial Tank Canada L. salmonis CpG Purcell et al. 2013 

 0.80 Challenge trial Tank UK L. salmonis Various additives Jensen et al. 2015 

 0.48–0.67 Cage trial Small cage Norway L. salmonis Sex hormones Krasnov et al. 2015 

 0.78 Challenge trial Tank Chile 
C. 

rogercresseyi 
Various additives Nunez-Acuna et al. 2015 

 0.33–0.67 Challenge trial Tank Canada L. salmonis Peptidoglycan extract Sutherland et al. 2017 

 1.22 Sea cage trial Large cage Norway L. salmonis 
Skretting Shield (all cages 

had cleaner fish) 
Bui et al. 2020 

 2.08 Sea cage trial Large cage Norway L. salmonis Skretting Shield (all cages Gentry et al. 2020 
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had cleaner fish) 

Repellents/toxins 0.83 Challenge trial Tank Norway L. salmonis Phytochemicals Holm et al. 2016 

2.2 Vaccination        

Recombinant protein 0.43 Challenge trial Tank Chile 
C. 

rogercresseyi 
my32 protein Carpio et al. 2011 

 0.45–0.47 Challenge trial Tank Norway L. salmonis my32 protein Kumari Swain et al. 2018 

 0.65–1 Challenge trial Tank Norway L. salmonis 
P33 protein offered 

strongest effect 
Contreras et al. 2020 

2.3 Breeding for louse 

resistance 
       

Various 0.65 Sea cage trial Small cages Norway L. salmonis 

Comparison of most 

resistant and susceptible 

families 

Holm et al. 2015 

Multiple methods 0.91 Sea cage trial Multi farm Norway L. salmonis All cages had cleaner fish Bui et al. 2019b 

 0.51 Sea cage trial Large cage Norway L. salmonis 

Functional feed + deep 

feeding and lighting (all 

cages had cleaner fish) 

Bui et al. 2020 

 0.79 Sea cage trial Large cage Norway L. salmonis 

Functional feed + deep 

feeding and lighting + 

skirt (all cages had 

cleaner fish) 

Bui et al. 2020 

 1.91 Sea cage trial Large cage Norway L. salmonis 

Functional feed + deep 

feeding and lighting (all 

cages had cleaner fish) 

Gentry et al. 2020 

 2.43 Sea cage trial Large cage Norway L. salmonis 

Functional feed + deep 

feeding and lighting + 

skirt (all cages had 

cleaner fish) 

Gentry et al. 2020 
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FIGURES 

 

Figure 1. Sea louse infestation timepoints targeted by preventative methods and delousing 

treatments. Colours denote on-demand delousing (red), continuous delousing (orange) and 

preventative methods (green). Line drawings indicate the stage of louse predominantly 

affected by each method, L-R: larvae (nauplii and copepodids), sessile stages (chalimus I and 

II), and mobile stages (pre-adults and adults). 
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Figure 2. Distribution of effect sizes (natural log of the response ratio: lnRR) across studies 

testing preventive methods. Studies are grouped by the type of preventative method tested 

(Approach). Points denote the effect size of each study, coloured by the level of evidence 

provided. Negative values for lnRR indicate an effective approach. lnRR = 0 corresponds to 

no difference between control and treatment groups. Boxes indicate the median and 25-75% 

interquartile range of effect sizes from studies testing each approach. 
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Figure 3. Funnel plot of published effect sizes (natural log of the response ratio) of 

preventative methods against sea louse infestations on Atlantic salmon. Effect sizes are 

plotted against the precision of the experiment (inverse of the standard error). The absence of 

studies on the right side of the plot is suggestive of publication bias against negative findings. 

Red line indicates zero effect (lnRR = 0), orange line indicates median effect size. 
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Figure 4. Conceptual diagram outlining: (A) the current delousing treatment-dominated 

paradigm for parasite control; (B) the new paradigm with a focus on prevention rather than 

treatment. Red arrows indicate management actions and how they are targeted (i.e. 

specificity, mediation). Blue arrows indicate supply of infective larvae (line thickness scales 

with number entering cages). Black arrows indicate host and parasite traits (line thickness 

scales with relative importance). 


